Floquet theory for generalized differential equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Floquet Theory and Stability of Nonlinear Integro-differential Equations

One of the classical topics in the qualitative theory of differential equations is the Floquet theory. It provides a means to represent solutions and helps in particular for stability analysis. In this paper first we shall study Floquet theory for integro-differential equations (IDE), and then employ it to address stability problems for linear and nonlinear equations.

متن کامل

Generalized Bilinear Differential Equations

We introduce a kind of bilinear differential equations by generalizing Hirota bilinear operators, and explore when the linear superposition principle can apply to the resulting generalized bilinear differential equations. Together with an algorithm using weights, two examples of generalized bilinear differential equations are computed to shed light on the presented general scheme for constructi...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Floquet Boundary Value Problem of Fractional Functional Differential Equations∗

In this paper, we prove the existence of positive solutions for Floquet boundary value problem concerning fractional functional differential equations with bounded delay. The results are obtained by using two fixed point theorems on appropriate cones.

متن کامل

Floquet Theory

Lemma 8.4 If C is a n n × matrix with 0 det ≠ C , then, there exists a n n × (complex) matrix B such that C e = . Proof: For any matrix C , there exists an invertible matrix P , s.t. 1 P CP J − = , where J is a Jordan matrix. If C e = , then, 1 1 1 P B P B e P e P P CP J − − − = = = . Therefore, it is suffice to prove the result when C is in a canonical form. Suppose that 1 ( , , ) s C diag C C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Časopis pro pěstování matematiky

سال: 1973

ISSN: 0528-2195

DOI: 10.21136/cpm.1973.117824